LiveZilla Live Help
 Разработка и производство шаговых, вентильных, коллекторных электроприводов.
 Продажа электродвигателей, мотор-редукторов.

Бесплатный звонок по России

Теория управления шаговыми двигателями

В системах управления электроприводами для отработки заданного угла или перемещения используют датчики обратной связи по углу или положению выходного вала исполнительного двигателя

Система отработки угла выходного вала двигателя с использованием датчика обратной связи.

Система отработки угла выходного вала двигателя с использованием датчика обратной связи.

Если в качестве исполнительного двигателя использовать синхронный шаговый двигатель, то можно обойтись без датчика обратной связи (Дт) и упростить систему управления двигателем (СУ), так как отпадает необходимость использования в ней цифро-аналоговых (ЦАП) и аналого-цифровых (АЦП) преобразователей.
Шаговыми двигателями называются синхронные двигатели, преобразующие команду, заданную в виде импульсов, в фиксированный угол поворота двигателя или в фиксированное положение подвижной части двигателя без датчиков обратной связи.
Мощность шаговых двигателей лежит в диапазоне от единиц ватт до одного киловатта.
Шаговый двигатель имеет не менее двух положений устойчивого равновесия ротора в пределах одного оборота.
Напряжение питания обмоток управления шагового двигателя представляет собой последовательность однополярных или двуполярных прямоугольных импульсов, поступающих от электронного коммутатора (К). Результирующий угол соответствует числу переключений коммутатора, а частота вращения двигателя соответствует частоте переключений электронного коммутатора.
Шаговые двигатели различаются по конструктивным группам: активного типа (с постоянными магнитами), реактивного типа и индукторные.
Шаговые синхронные двигатели активного типа. В отличие от синхронных машин непрерывного вращения шаговые двигатели имеют на статоре явно выраженные полюса, на которых расположены катушки обмоток управления.
Принцип действия шагового двигателя активного типа рассмотрим на примере двухфазного двигателя

Принципиальная схема управления шаговым двигателем

Принципиальная схема управления шаговым двигателем

Различают два вида коммутации обмотки шагового двигателя: симметричная и несимметричная.
При симметричной системе коммутации на всех четырех тактах возбуждается одинаковое число обмоток управления

Симметричная схема коммутации

Симметричная система коммутации

При несимметричной системе коммутации четным и нечетным тактам соответствует различное число возбужденных обмоток управления

 Несимметричная система коммутации

Несимметричная система коммутации

Ротор у шагового двигателя активного типа представляет собой постоянный магнит, при числе пар полюсов больше 1, выполненный в виде "звездочки" .

Число тактов КТ системы управления называют количеством состояний коммутатора на периоде его работы T. Как видно из рисунков для симметричной системы управления КТ =4, а для несимметричной КТ =8.

В общем случае число тактов КТ зависит от числа обмоток управления (фаз статора) mу и может быть посчитано по формуле:

KT=myn1n1

где

n1=1 при симметричной системе коммутации;

n1=2 при несимметричной системе коммутации;

n2=1 при однополярной коммутации;

n2=2 при двуполярной коммутации.

Положения ротора шагового двигателя с постоянными магнитами при подключении к источнику питания одной (а) и двух обмоток (б)

Схемы, иллюстрирующие положения ротора шагового двигателя с постоянными магнитами при подключении к источнику питания одной (а) и двух обмоток (б)

При однополярной коммутации ток в обмотках управления протекает в одном направлении; при двуполярной - в обеих.
Синхронизирующий (электромагнитный) момент машины является результатом взаимодействия потока ротора с дискретно вращающимся магнитным полем статора. Под действием этого момента ротор стремится занять такое положение в пространстве машины, при котором оси потоков ротора и статора совпадают.
Мы рассмотрели шаговые синхронные машины с одной парой полюсов (р=1). Реальные шаговые микродвигатели являются многополюсными (р>1).
Для примера приведем двуполюсный трехфазный шаговый двигатель.

Двуполюсный трехфазный шаговый двигатель

Двигатель с р парами полюсов имеет зубчатый ротор в виде звездочки с равномерно расположенными вдоль окружности 2р постоянными магнитами. Для многополюсной машины величина углового шага ротора равна:

формула

Чем меньше шаг машины, тем точнее (по абсолютной величине) будет отрабатываться угол. Увеличение числа пар полюсов связано с технологическими возможностями и увеличением потока рассеяния. Поэтому р= 4...6. Обычно величина шага ротора активных шаговых двигателей составляет десятки градусов.

Реактивные шаговые двигатели. У активных шаговых двигателей есть один существенный недостаток: у них крупный шаг, который может достигать десятков градусов.
Реактивные шаговые двигатели позволяют редуцировать частоту вращения ротора. В результате можно получить шаговые двигатели с угловым шагом, составляющим доли градуса.
Отличительной особенностью реактивного редукторного двигателя является расположение зубцов на полюсах статора

 Принцип действия реактивного редукторного шагового двигателя

Принцип действия реактивного редукторного шагового двигателя: (а) - исходное положение устойчивого равновесия; (б) - положение устойчивого равновесия. cдвинутое на один шаг

Если зубцы ротора соосны с одной диаметрально расположенной парой полюсов статора, то они сдвинуты относительно каждой из оставшихся трех пар полюсов статора соответственно на ј, Ѕ и ѕ зубцового деления.
При большом числе зубцов ротора Zр его угол поворота значительно меньше угла поворота поля статора.
Величина углового шага редукторного реактивного шагового двигателя определится выражением:

формула

В выражении для КТ величину n2 следует брать равной 1, т. к. изменение направления поля не влияет на положение ротора.
Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.
Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.
Повышение степени редукции шаговых двигателей, как активного типа, так и реактивного, можно достичь применением двух, трех и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления. Если число пакетов два, то этот сдвиг равен 1/2 зубцового деления, если три, то - 1/3, и т.д. В то же время роторы-звездочки каждого из пакетов не имеют пространственного сдвига, т.е. оси их полюсов полностью совпадают.
Такая конструкция сложнее в изготовлении и дороже однопакетной, и, кроме того, требует сложного коммутатора.
Индукторные (гибридные) шаговые двигатели. Стремление совместить преимущества активного шагового двигателя (большой удельный синхронизирующий момент на единицу объема, наличие фиксирующего момента) и реактивного шагового двигателя (малая величина шага) привело к созданию гибридных индукторных шаговых двигателей.
В настоящее время имеется большое число различных конструкций индукторных двигателей, различающихся числом фаз, размещением обмоток, способом фиксации ротора при обесточенном статоре и т.д. Во всех конструкциях индукторных шаговых двигателей вращающий момент создается за счет взаимодействия магнитного поля, создаваемого обмотками статора и постоянного магнита в зубчатой структуре воздушного зазора. При этом синхронизирующий момент шагового индукторного двигателя по природе является реактивным и создается намагничивающей силой обмоток статора, а постоянный магнит, расположенный либо на статоре, либо на роторе, создает фиксирующий момент, удерживающий ротор двигателя в заданном положении при отсутствии тока в обмотках статора.
По сравнению с шаговым двигателем реактивного типа у индукторного шагового двигателя при одинаковой величине шага больше синхронизирующий момент, лучшие энергетические и динамические характеристики.
Линейные шаговые синхронные двигатели. При автоматизации производственных процессов весьма часто необходимо перемещать объекты в плоскости (например, в графопостроителях современных ЭВМ и т.д.). В этом случае приходится применять преобразователь вращательного движения в поступательное с помощью кинематического механизма.
Линейные шаговые двигатели преобразуют импульсную команду непосредственно в линейное перемещение. Это позволяет упростить кинематическую схему различных электроприводов

Линейный шаговый двигатель

Схема, иллюстрирующая работу линейного шагового двигателя

Статор линейного шагового двигателя представляет собой плиту из магнитомягкого материала. Подмагничивание магнитопроводов производится постоянным магнитом.
Зубцовые деления статора и подвижной части двигателя равны. Зубцовые деления в пределах одного магнитопровода ротора сдвинуты на половину зубцового деления t/2. Зубцовые деления второго магнитопровода сдвинуты относительно зубцовых делений первого магнитопровода на четверть зубцового деления t/4. Магнитное сопротивление потоку подмагничивания не зависит от положения подвижной части.
Принцип действия линейного шагового двигателя не отличается от принципа действия индукторного шагового двигателя. Разница лишь в том, что при взаимодействии потока обмоток управления с переменной составляющей потока подмагничивания создается не момент, а сила FС, которая перемещает подвижную часть таким образом, чтобы против зубцов данного магнитопровода находились зубцы статора, т.е. на четверть зубцового деления t/4.

формула

где
KТ - число тактов схемы управления.
Для перемещения объекта в плоскости по двум координатам применяются двухкоординатные линейные шаговые двигатели.
В линейных шаговых двигателях применяют магнито-воздушную подвеску. Ротор притягивается к статору силами магнитного притяжения полюсов ротора. Через специальные форсунки под ротор нагнетается сжатый воздух, что создает силу отталкивания ротора от статора. Таким образом, между статором и ротором создается воздушная подушка, и ротор подвешивается над статором с минимальным воздушным зазором. При этом обеспечивается минимальное сопротивление движению ротора и высокая точность позиционирования.
Режимы работы синхронного шагового двигателя. Шаговый двигатель работает устойчиво, если в процессе отработки угла при подаче на его обмотки управления серии импульсов не происходит потери ни одного шага. Это значит, что в процессе отработки каждого из шагов ротор двигателя занимает устойчивое равновесие по отношению к вектору результирующей магнитной индукции дискретно вращающегося магнитного поля статора.
Режим отработки единичных шагов соответствует частоте импульсов управления, подаваемых на обмотки шагового двигателя, при котором шаговый двигатель отрабатывает до прихода следующего импульса заданный угол вращения. Это значит, что в начале каждого шага угловая скорость вращения двигателя равна 0

Процесс отработки шагов шаговым двигателем

Процесс отработки шагов шаговым двигателем

При этом возможны колебания углового вала двигателя относительно установившегося значения. Эти колебания обусловлены запасом кинетической энергии, которая была накоплена валом двигателя при отработке угла. Кинетическая энергия преобразуется в потери: механические, магнитные и электрические. Чем больше величина перечисленных потерь, тем быстрее заканчивается переходный процесс отработки единичного шага двигателем.
В процессе пуска ротор может отставать от потока статора на шаг и более; в результате может быть расхождение между числом шагов ротора и потока статора.
Основными характеристиками шагового двигателя являются: шаг, предельная механическая характеристика и приемистость.
Предельная механическая характеристика- это зависимость максимального синхронизирующего момента от частоты управляющих импульсов

Предельная механическая характеристика шагового двигателя

Предельная механическая характеристика шагового двигателя

Приемистость- это наибольшая частота управляющих импульсов, при которой не происходит потери или добавления шага при их отработке. Она является основным показателем переходного режима шагового двигателя. Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага, момента инерции вращающихся (или линейно перемещаемых) частей и статического момента сопротивления

 Предельная динамическая характеристика шагового двигателя

Предельная динамическая характеристика шагового двигателя

Приемлемость падает с увеличением нагрузки.

Оригинал этой статьи находится здесь: Курс лекций "Электрические машины". Автор: Г.А. Кардонов

Далее пока только на английском

Stepper Motor
Motors convert electrical energy into mechanical energy.A stepper motor converts electrical pulses into specific rotational movements.The movement created by each pulse is precise and repeatable,which is why step- per motors are so effective for positioning applications.
Permanent Magnet stepper motors incorporate a permanent magnet rotor,coil windings and magnetically conductive stators.Energizing a coil winding creates an electromagnetic field with a north and south pole .The stator carries the magnetic field.The magnetic field can be altered by sequentially energizing or "stepping" the stator coils which generates rotary motion.

Figure 1 illustrates a typical step sequence for a two phase motor.In Step 1 phase A of a two phase stator is energized.This magnetically locks the rotor in the position shown,since unlike poles attract,W hen phase A is turned off and phase B is turned on,the rotor rotates 90° clockwise.In step 3,phase B is turned on but with the polarty reversed from Step 1,this causes another 90° rotation.In Step 4, phase A is turned off and phase B is turned on,with polarity reversed from Step2. Repeating this sequence causes the rotor to rotate clockwise in 90° steps.
The stepping sequence illustrated in figure 1 is called "one phase on" stepping.A more common method of stepping is "two phase on" where both phases of the motor are always energized.However,only the polarty of phase is switched at a time,as shown in figure 2. With two phase on stepping the rotor aligns itself between the "average" north and "average" south magnetic poles.Since both phases are always on,this method gives 41.4% more torque than "one phase on" stepping.

Half Stepping
The motor can also be "half stepped" by inserting an off state between transitioning phases.This cuts a stepper's full step angle in half.For example,a 90° stepping motor would move 45 on each half step,figure3.

However,half stepping typically results in a 15%-30% loss of torque depending on step rate when compared to the two phase on stepping sequence.Since one of the windings is not energized during each alternating half step there is less electromagnetic force exerted on the rotor resulting in a net loss of torque.

DC Brush Motor
Principles of operation
    Reference to the chart reveals useful performance information valid for all fulling servomotors.
It shows speed n, current I, output power P and efficiency ¦З plotted against torque M for a given supply voltage U. Torque M is a function of the current I and the torque constant k (expressed in Nm/A). The motor develops its maximum torque Ms at stall (n=0), when the current is maximum and determined only by the supply voltage U and the rotor resistance R:
With increasing speed, an increasing back EMF E is induced in the armature which tends to reduce the current:

The value of E is the product of angular speed ¦Ш (expressed in rad/s) and the torque constant (expressed in V/rad/s=Vs=Nm/A):
E = k¦Ш
Thus, the supply voltage splits into two parts: RI, necessary to establish the current I in the armature, which generates the torque
M, and k¦Ш to overcome the induced voltage, in order to generate the speed¦Ш:
U = RI + k¦Ш
No-load speed no is a function of the supply voltage and is reached when E becomes almost equal to U; no-load current Io is a function of friction torque:

Power output P is the product of angular speed¦Ш and torque M (P = M.¦Ш); for a given voltage it reaches its maximum Pmax at half the stall torque Ms, where efficiency is close to 50%. The maximum continuous output power is defined by an hyperbola delimiting the continuous and intermittent operation ranges.
Efficiency¦Зis the mechanical to electrical power ratio (¦З= Pm / Pel). Maximum efficiency¦Зmax occurs at relatively high speed. Its value depends upon the ratio of stall torque and friction torque and thus is a function of the supply voltage:

The maximum continuous torque depends upon dissipated power (I2R), its maximum value is determined by:

Where Tmax is the maximum tolerated armature temperature, Tamb is the ambient temperature, Rmax is the rotor resistance at temperature Tmax and Rth is the total thermal resistance (rotor-body-ambient).
At a given torque M, increasing or decreasing the supply voltage will increase or decrease the speed. The speed-torque function varies proportionally to the supply voltage U.


Small Brushless DC Motor
Principles of operation
    The differences between a DC motor having a mechanical commutation system and a BLDC motor are mainly found in :
- the product concept
- the commutation of phase currents.
From the user's point of view, brushless DC motors follow the same equations as those with brushes: torque is proportional to current, speed depends on the voltage and the load torque.
The commutation of brushless motors
In the conventional DC motor commutation takes place mechanically through the commutator-and-brush system. In a BLDC motor, commutation is done by electronic means. In that case the instantaneous rotor position must be known in order to determine the phases to be energized.
The angular rotor position can be known by:
- using a position sensor (Hall sensor, optical encoder, resolver)
- electronically analyzing the back-EMF of a non-energised winding. This is called sensorless commutation.
Use of Hall sensors
In general, BLDC motor have three phase windings. The easiest way is to power two of them at a time, using Hall sensors to know the rotor position. A simple logic allows for optimal energizing of the phases as a function of rotor position, just like the commutator and brushes are doing in the conventional DC motor.
Use of an encoder or resolver
The rotor position may also be known by use of an encoder or resolver. Commutation may be done very simply, similar to the procedure with Hall sensors, or it may be more complex by modulating sinusoidal currents in the three phases. This is called vector control, and its advantage is to provide a torque ripple of theoretically zero, as well as a high resolution for precise positioning.
Use of Back-EMF analysis
A third option requiring no position sensor is the use of a particular electronic circuit. The motor has only three hook-up wires, the three phase windings are connected in either triangle or star. In the latter case, resistors must be used to generate a zero reference voltage. With this solution the motor includes no sensors or electronic components and it is therefore highly insensitive to hostile environments. For applications such as hand-held tools, where the cable is constantly moved, the fact of just three wires is another advantage.
The functioning of a sensorless motor is easy to understand. In all motors, the relation of back-EMF and torque versus rotor position is the same. Zero crossing of the voltage induced in the non-energised winding corresponds to the position of maximum torque generated by the two energized phases. This point of zero crossing therefore allows to determine the moment when the following commutation should take place depending on motor speed. This time interval is in fact equivalent to the time the motor takes to move from the position of the preceding commutation to the back-EMF zero crossing position. Electronic circuits designed for this commutation function allow for easy operation of sensorless motors.
Small Brushless DC Motor
As the back-EMF information is necessary to know the rotor position, sensorless commutation doesn't work with the motor at stall. The only way of starting is to pilot it at low speed like a stepper in open loop.
Remember:
- for commutation, position sensors are necessary when operating in incremental mode
- sensorless commutation is recommended only for applications running at constant speed and load.
Operating principle of BLDC motors:
It follows the same equations as the DC motor using mechanical commutation except that parameters like iron losses and losses in the drive circuit are no longer negligible in applications where efficiency is of prime importance.
Iron losses
They depend on speed and, in the torque formula, may be introduced as viscous friction. The equation for useful motor torque becomes:

Losses in the electronics
The current and votage required by the motor and the drive circuit to operated at the desired speed and torque depend also on the drive circuit.
As an example, a driver bridge in bipolar technique will reduce the voltage available at the motor terminals by about 1.7V, and the total current must include the consumption of the circuitry.