LiveZilla Live Help
 Разработка и производство шаговых, вентильных, коллекторных электроприводов.
 Продажа электродвигателей, мотор-редукторов.

Бесплатный звонок по России

"Первый шаг" шагового двигателя

Шаговый двигатель является традиционным исполнительным устройством многих электронных приборов и систем. Автор не только знакомит нас с устройством и принципами работы шагового двигателя, но и предлагает несложное устройство, состоящее из PIC процессора и драйвера, которое реализует различные режимы его работы.

Шаговый двигатель (далее ШД) представляет собой бесколлекторный двигатель постоянного тока с фиксированными положениями вала. ШД предназначен в первую очередь для точного позиционирования вала без применения систем обратной связи. ШД широко применяются в автомобилях, бытовой радиоаппаратуре, компьютерах. На производстве основное место использования ШД – это автоматизированное технологическое оборудование.

Для получения общего представления о теории ШД и проверки этой теории на практике достаточно небольшого объёма информации – в пределах этой статьи. Однако, как и в любой предметной области, знаний для профессионального освоения предмета требуется намного больше.

Шаговый двигатель, в общем случае, – это двигатель, имеющий ротор, статор и несколько обмоток. Вал ШД совершает поворот на фиксированный угол (шаг) при кратковременной подаче напряжения на обмотки в правильной последовательности. Обычно обмоток 2 или 4. Для того чтобы заставить ШД вращаться, необходимо поочерёдно подавать рабочее напряжение на обмотки двигателя в нужной полярности. Для ШД с двумя обмотками (биполярного ШД) необходимо менять очерёдность и полярность подаваемых импульсов. ШД с 4 обмотками (униполярный ШД) проще в управлении – для вращения вала достаточно поочерёдно подавать напряжение на каждую из четырёх обмоток. Вал двигателя при этом будет каждый раз поворачиваться на фиксированный шаг. Величина этого шага обусловлена конструкцией двигателя и составляет обычно единицы градусов. Как правило, чем меньше шаг двигателя, тем он дороже. Для формирования требуемой последовательности импульсов применяются микроконтроллеры в связке с силовыми элементами – драйверами. В простейшем случае драйвер представляет собой транзисторный ключ. Также выпускаются специализированные драйверы в интегральном исполнении, рассчитанные на разную мощность и более сложные алгоритмы управления, например, с использованием обратной связи.

Для нашего примера используем ШД привода головки записи-чтения от 5,25" флоппи-дисковода TEAC.

Это униполярный двигатель с 5 выводами: 4 обмотки и общий провод подачи питания 12 В. ШД имеет шаг 1,8 градуса. Соответственно, для того чтобы вал совершил полный оборот, необходимо подать 200 импульсов. Для нашего эксперимента не подойдет ШД от современного 3,5" дисковода. Там применяются биполярные двигатели, которые требуют более сложной схемы драйвера. Кроме того, качество исполнения ШД от трёхдюймового дисковода заметно ниже. Для небольших униполярных двигателей от CD-привода, принтера или флоппи-дисковода в качестве драйвера можно применить микросхему ULN2003A (рис. 1). Это набор транзисторов по схеме Дарлингтона с открытым коллектором и защитным диодом в цепи нагрузки (рис. 2). Микросхема содержит в себе 7 каналов коммутации с током нагрузки до 0,5 А. В качестве микроконтроллера может использоваться любой 8- или 16-разрядный процессор. В экспериментальной схеме (рис. 3) мы применяем процессор PIC16F84 от Microchip, однако провести эксперимент с использованием данной программы можно практически на любом процессоре семейства PIC12…PIC18.

Программа 1 (Stepper1.asm) реализует вращение вала двигателя с заданной скоростью в одном направлении. Используется так называемый «полношаговый режим». Диаграмма подачи импульсов на обмотки приведена на рис. 4. Это простейший способ управления ШД со всеми присущему ему недостатками: повышенная шумность, колебания вала при перемещении от шага к шагу, особенно заметные при наличии массивной нагрузки на валу, малое количество шагов на оборот. В реальных системах используются более сложные алгоритмы управления ШД. Это режимы плавного разгона, микрошага, использование обратной связи по току и другие. В программе 2 (Stepper2.asm) реализован «полушаговый» режим управления. Здесь двигатель совершает в два раза больше шагов на оборот, т.е. теперь вал занимает и промежуточные положения между фиксированными углами поворота в 1,8 градуса. Это достигается одновременной подачей напряжения на две соседние обмотки на чётных шагах (рис. 5). Полушаговый режим повышает плавность хода и снижает шум двигателя. Всего программой подаётся 200 импульсов на обмотки двигателя, при этом вал поворачивается на угол 180 градусов. Затем следует пауза в 2 секунды и происходит поворот на тот же угол, но в противоположном направлении. Далее цикл повторяется. Программа хорошо закомментирована и достаточно «прозрачна». Изменением констант вы сможете задать другие углы поворота и скорость вращения вала. Следует учитывать, что предельная скорость вращения ограничена конструкцией используемого ШД и не превышает 150…200 оборотов в минуту в зависимости от режима управления. Более сложные алгоритмы управления выходят за рамки данной статьи.

Схема драйвера ULN2003A Драйвер ULN2003A, схема одного канала

Рис. 1 Схема драйвера ULN2003A

Рис. 2. Драйвер ULN2003A, схема одного канала

Принципиальная схема устройства управления двигателем
Рис.3. Принципиальная схема устройства управления двигателем
Диаграмма подачи импульсов на обмотки в полношаговом режиме Диаграмма подачи импульсов на обмотки в полушаговом режиме
            использования
Рис. 4. Диаграмма подачи импульсов на обмотки в полношаговом режиме Рис. 5. Диаграмма подачи импульсов на обмотки в полушаговом режиме использования

Статья Олега Пушкарёва с сайта журнала "СОВРЕМЕННАЯ ЭЛЕКТРОНИКА" приведена с сокращениями.